The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
歧视性无监督的表面异常检测的最新面积取决于外部数据集用于合成异常训练图像的外部数据集。这种方法很容易出现近乎分布异常的失败,因为由于它们与无异常区域的相似性,因此很难现实地合成这些异常。我们提出了一个基于量化的特征空间表示的架构,该架构避免了图像级异常合成要求。在没有对异常的视觉特性做出任何假设的情况下,DSR通过对学到的量化特征空间进行采样,从而在特征级别生成异常,从而允许受控的近乎分布异常。 DSR在KSDD2和MVTEC异常检测数据集上实现了最新结果。关于具有挑战性的现实世界KSDD2数据集的实验表明,DSR明显优于其他无监督的表面异常检测方法,在异常检测中提高了10%的AP,并在异常定位中提高了35%的AP。
translated by 谷歌翻译
强大的海上障碍物检测对于安全导航自动船和及时避免碰撞至关重要。当前的最新技术基于在大型数据集上训练的深度分割网络。但是,此类数据集的每个像素地面真相标签是劳动密集型且昂贵的。我们提出了一个新的脚手架学习制度(SLR),该制度利用薄弱的注释,包括水边缘,地平线和障碍物边界框来训练基于细分的障碍物检测网络,从而将所需的地面真相标记工作减少了21倍。 SLR从弱注释中训练初始模型,然后在重新估计分割伪标签和改进网络参数之间交替。实验表明,在弱标签上使用SLR训练的海上障碍分割网络不仅匹配,而且优于接受密集地面真相标签的相同网络,这是一个了不起的结果。除了提高精度外,SLR还增加了域的概括,可用于较低的手动注释负载,用于域的适应性。代码和预培训模型可在https://github.com/lojzezust/slr上找到。
translated by 谷歌翻译
强大的海上障碍物检测对于完全自动的无人体表面车辆(USV)至关重要。目前广泛采用的基于细分的障碍检测方法容易分类对象反射和阳光作为障碍,从而产生许多假阳性检测,从而有效地使USV导航的方法不切实际。但是,对物体反射的水扰动引起的时间外观变化与真实物体的外观动力学非常独特。我们利用这一属性来设计wasr-t,这是一个新型的海上障碍检测网络,从最近的一系列框架中提取时间上下文,以减少歧义。通过学习水面上对象反射的局部时间特征,WASR-T可以在存在反射和闪光的情况下显着提高障碍物检测精度。与现有的单帧方法相比,WASR-T将假阳性检测的数量降低了41%,在船的危险区域内将超过53%的人降低了53%,同时保留了很高在具有挑战性的MODS海上障碍物检测基准上的艺术表现。代码,预处理的模型和扩展数据集可在https://github.com/lojzezust/wasr-t上获得
translated by 谷歌翻译
基于模板的鉴别性跟踪器是目前主导的跟踪范例由于其稳健性,但不限于边界框跟踪和有限的转换模型,这降低了它们的本地化准确性。我们提出了一个判别的单次分割跟踪器 - D3S2,其缩小了视觉对象跟踪和视频对象分段之间的差距。单次网络应用两个具有互补的几何属性的目标模型,一个不变的变换,包括非刚性变形,另一个假设刚性对象同时实现强大的在线目标分段。通过解耦对象和特征比例估计,进一步提高了整体跟踪可靠性。没有每数据集FineTuning,并且仅用于分段作为主要输出,D3S2胜过最近的短期跟踪基准Vot2020上的所有已发布的跟踪器,并非常接近GOT-10K上的最先进的跟踪器, TrackingNet,OTB100和Lasot。 D3S2优于视频对象分段基准上的前导分割跟踪器SIAMMASK,并与顶部视频对象分段算法进行操作。
translated by 谷歌翻译
This short paper discusses continually updated causal abstractions as a potential direction of future research. The key idea is to revise the existing level of causal abstraction to a different level of detail that is both consistent with the history of observed data and more effective in solving a given task.
translated by 谷歌翻译
Many researchers have voiced their support towards Pearl's counterfactual theory of causation as a stepping stone for AI/ML research's ultimate goal of intelligent systems. As in any other growing subfield, patience seems to be a virtue since significant progress on integrating notions from both fields takes time, yet, major challenges such as the lack of ground truth benchmarks or a unified perspective on classical problems such as computer vision seem to hinder the momentum of the research movement. This present work exemplifies how the Pearl Causal Hierarchy (PCH) can be understood on image data by providing insights on several intricacies but also challenges that naturally arise when applying key concepts from Pearlian causality to the study of image data.
translated by 谷歌翻译
Research around AI for Science has seen significant success since the rise of deep learning models over the past decade, even with longstanding challenges such as protein structure prediction. However, this fast development inevitably made their flaws apparent -- especially in domains of reasoning where understanding the cause-effect relationship is important. One such domain is drug discovery, in which such understanding is required to make sense of data otherwise plagued by spurious correlations. Said spuriousness only becomes worse with the ongoing trend of ever-increasing amounts of data in the life sciences and thereby restricts researchers in their ability to understand disease biology and create better therapeutics. Therefore, to advance the science of drug discovery with AI it is becoming necessary to formulate the key problems in the language of causality, which allows the explication of modelling assumptions needed for identifying true cause-effect relationships. In this attention paper, we present causal drug discovery as the craft of creating models that ground the process of drug discovery in causal reasoning.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Automatic term extraction plays an essential role in domain language understanding and several natural language processing downstream tasks. In this paper, we propose a comparative study on the predictive power of Transformers-based pretrained language models toward term extraction in a multi-language cross-domain setting. Besides evaluating the ability of monolingual models to extract single- and multi-word terms, we also experiment with ensembles of mono- and multilingual models by conducting the intersection or union on the term output sets of different language models. Our experiments have been conducted on the ACTER corpus covering four specialized domains (Corruption, Wind energy, Equitation, and Heart failure) and three languages (English, French, and Dutch), and on the RSDO5 Slovenian corpus covering four additional domains (Biomechanics, Chemistry, Veterinary, and Linguistics). The results show that the strategy of employing monolingual models outperforms the state-of-the-art approaches from the related work leveraging multilingual models, regarding all the languages except Dutch and French if the term extraction task excludes the extraction of named entity terms. Furthermore, by combining the outputs of the two best performing models, we achieve significant improvements.
translated by 谷歌翻译